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Packet Error Probabilities in Direct-Sequence 
Spread-Spectrum Packet Radio Networks 

MICHAEL GEORGIOPOULOS 

Abstract-The problem of computing packet error probabilities in 
direct-sequence spread-spectrum packet radio networks is difficult. 
Packet errors are caused by a combination of noise at the receivers and 
interference between packet transmissions, which overlap in time. The 
interference between packet transmissions produces dependent errors at 
the output of the demodulator. In this paper, we compute an upper 
bound on the packet error probability induced in direct-sequence 
spread-spectrum networks. The bound, which we introduce, is valid 
independently of whether signals arrive with equal or unequal powers at 
the receiver site. Furthermore, it has a simple form and it is easy to 
compute. Finally, it is valid for various classes of forward error correc- 
tion codes (e.g., BCH, convolutional codes). In this paper, numerical 
results are presented for BCH codes only. 

I. INTRODUCTION 

HE rapid growth of computer communication has motivated an T intense interest in packet switching radio techniques ([ 11). Fur- 
thermore, there is a growing need for computer communication and 
information distribution in tactical military applications where 
spread-spectrum waveforms must be used in order to achieve reli- 
able operation in the presence of intentional interference (jamming). 
As a result, a thorough investigation of spread-spectrum packet 
radio networks becomes necessary. 

An important attribute of spread-spectrum signaling is its multi- 
ple-access capability ([4]). In our work, we are going to examine 
the multiple-access capability of direct-sequence spread-spectrum 
packet radio networks. The most important indicator of the multi- 
ple-access capability of a packet radio network is the induced packet 
error probability. 

The problem of computing packet error probabilities in direct-se- 
quence spread-spectrum packet radio networks is difficult. Packet 
errors are caused by a combination of noise at the receivers and 
interference between packet transmissions. which overlap in time. 
The interference between packet transmissions produces dependent 
errors at the output of the demodulator. A lot of work has been 
directed towards the evaluation of the bit error probability in direct 
sequence spread spectrum networks ([2], [3], [lo]). The dependency 
of the bit errors does not allow us to extend the results in [2] and 
[3], in order to compute the packet error probability. 

To the best of our knowledge, the first serious effort to compute 
packet error probabilities in direct-sequence spread-spectrum net- 
works was conducted in [ 5 ] .  In [5], the authors compute an upper 
bound on the packet error probability induced in a direct-sequence 
spread-spectrum packet radio network, which utilizes binary convo- 
lutional coding, hard-decision demodulation, Viterbi decoding and 
random signature sequences. 

The upper bound on the packet error probability, derived in [5], 
has been proven to be valid only when the signals arrive with equal 
power at the receiver site. This is a severe limitation because, in 
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general, signals arrive at the receiver site with unequal powers. In 
this paper, utilizing the Chernoff bound, we find an upper bound on 
the packet error probability induced in direct-sequence spread-spec- 
trum packet radio networks, when BCH codes are used for the 
encoding of the packets. Our bound is valid independently of 
whether signals arrive with equal or unequal powers at the receiver 
site. The upper bound, which we introduce, has a simple form and it 
is easy to compute. Furthermore, as we show in Section IV, it can 
be improved at the expense of increased computational complexity. 
In addition to that, it is valid for other classes of codes (e.g., 
convolutional codes), but in this paper numerical results are pre- 
sented for BCH codes only. 

The organization of the paper is as follows. In Section 11, the 
model and some preliminary facts are provided. In Section III, the 
upper bound on the packet error probability is presented, accompa- 
nied by the numerical results. Comparisons between our bound and 
the bound presented in [5] are included in Section IV. In the same 
section, a method to improve our bound is described. Finally, in 
Section V, we make some conclusive remarks. 

11. THE MODEL-PRELIMINARIES 

The model for direct-sequence spread-spectrum transmission con- 
sidered here is described in [6]. The only difference is that the 
signature sequence is assumed to be a sequence of independent, 
identically distributed, binary random variables, each equally likely 
to be + 1 or - 1. Each transmitter in the network has such a 
sequence, and each sequence is assumed to be independent of the 
sequences of other transmitters. 

Let us now assume that we have a slotted channel (i.e., packet 
transmissions initiate at the beginnings of slots), K ( K  > 1) packet 
transmissions occur within a slot, and a receiver locks on to packet 
# 1 (packets are indexed # 1, # 2, * * . , # K ) .  Each packet origi- 
nates from a different transmitter in the network. A packet is exactly 
one codeword from a ( M ,  L )  BCH code ( M  = total number of 
codeword bits, L = total number of information bits; the bits of a 
codeword are indexed from 0 up to M - 1). 

Our objective is to compute the probability that the receiver 
decodes packet #1  incorrectly. We denote this probability by 
P e ( K ) .  It is worth noting that P e ( K )  is an upper bound on the 
probability that packet # 1 is incorrectly decoded by the receiver in 
an unslotted channel, provided that K - 1 corresponds to the 
maximum number of packets interfering with packet # 1. 

The receiver is assumed to be a correlation receiver. The output 
of the receiver, corresponding to the mth bit (0 I m I M - 1) of 
packet # 1, is the random variable (see [4] for more details) 

Each n, is a Gaussian random variable with zero mean and 
variance N0T/4 where No/2 is the two sided spectral density of the 
white Gaussian noise and T is the data bit duration. The random 
variables n, (0 I m 5 M - 1) are independent. The variable b:) 
represents the mth bit of packet # I ;  its value is either + 1 or - 1. 
The vector b,” represents a pair of consecutive data bits of packet 
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# i .  In particular, b y  = (b:' b;)), and each data bit b:) is 
either + 1 or - 1 .  Each 7, or 4, is a random variable representing 
the time delay (modulo T )  or the phase angle (modulo 2 n ) ,  
respectively, of packet # i relative to packet # 1. As in [4] ,  we take 
the range of 7, to be the interval [0, TI and the range of C#I~ to be the 
interval [ 0 , 2 n ] .  Finally, P, is the power of packet # i at the 
receiver. 

The function Zlml, which appears in ( 1 )  represents the normalized 
multiple-access interference due to packet # i .  This function is 
defined by 

Zy1(b?,r ,4)  = T - ' [ b t ) - , R r I ( 7 )  + b t ) l ? y 1 ( 7 ) ]  c o s 4  ( 2 )  

where the functions RT1 and I??' are given by 

Note that the a i ( t )  and the a l ( t )  in ( 3 )  and (4) are the spectral 
spreading signals corresponding to packets # i and # 1 ,  respec- 
tively. In fact, 

+ W  

a i ( t ) =  a y ) $ ( t - j T c ) ;  l 5 i s K  ( 5 )  

where {ay ) }  is the signature sequence corresponding to packet 
# i ,  $ ( t )  is the chip waveform, and T, is the chip duration. In this 
paper, we assume a rectangular chip Waveform. Hence, 

j= - w  

1 O s t i T ,  
0 otherwise. 

The detector decides that the mth bit of packet # 1 is + 1 or - 1 
if Z,,, > 0 or Z,,, < 0, respectively. It is easy to show that the rnth 
bit of packet # 1 is decoded correctly by the above detector if and 
only if the random variable 

x,,, = n*, + 1 + ~ ~ ~ ( ~ , / ~ 1 ) 1 ' 2 ~ ~ 1 ( ~ ~ ,  T i ,  4 i )  ; 1 K 

i = 2  

O s m s M - 1  (7) 

is positive. In (7), each n& is a Gaussian random variable with 
mean 0 and variance N0/2 Eb where Eb = P I T  is the energy per 
data bit of packet # 1 .  The random variables n*, (0 5 m 5 M - 1 )  
are statistically independent. 

Let us now denote by S a random variable, which represents the 
number of random variables X,,, (0 5 m 5 M - 1 )  that are nega- 
tive. Then, 

P e ( K )  = P r ( S  > e )  

where e corresponds to the error correction capability of the BCH 
code. We will state two propositions. 

Proposition I :  For the computation of P e ( K )  the 7,'s ( 2  I i 5 
K )  need be known only to the nearest chip. 

Proposition 2: Pe( K )  is independent of the values of the data bit 
sequences {b:)},Md for 1 I i i K .  

The validity of Propositions 1 and 2 is based on the fact that 
random signature sequences are utilized. An immediate consequence 
of Propositions 1 and 2 ,  is that the random variable X, in (7) 
assumes the following equivalent form [see also (2)-(6)]:  

[ 

(8) 

K 
X,,, = n*, + 1 + ( P i / P l ) ' " {  [ u % ) ~ _ , ~ $ ) N ] ~ ~ / T ,  

i = 2  

(9 )  0 5 r n I M - 1 .  

In (9), we assumed that each of the spread-spectrum signals has 
N chips per bit. Let us make an important observation. 

Observation I :  Given the phase ( + i )  and the delay ( r i )  of each 
interfering transmission ( 2  5 i I K ) ,  the random variables X, 
(0 I m I M - 1 )  are not independent. 

To prove our observation we show, in Appendix A, that for 
N = 2 ,  K = 3, q52 = 43 = 0,  r2 = r3 = T,/2, and P 2 / P l  = 
P 3 / P l  = 1 the following inequality is true: 

Pr ( X ,  < 0 n XI < 0 )  + Pr ( X ,  < 0 )  Pr (X, < 0 ) .  ( I O )  

In some examples of packet radio networks the random variables 
X, are conditionally independent (given all delays and phases). 
Consider, for instance, a packet radio network where each packet 
consists of two codewords. Each code word is BCH code. We send 
the first codeword of a packet at bit intervals 0 , 2 , 4 ,  * * * ,  and the 
second codeword of the packet at bit intervals 1 , 3 , 5 ,  . * . Let us 
denote by S* the number of random variables X ,  ( m  = 
0 , 2 , 4 ,  . . . ) or the number of random variables X ,  ( m  = 
1 , 3 , 5 ,  . . . ), which are negative. Let us also denote by P,*(K) the 
codeword error probability. Then, 

P , * ( K )  = Pr ( S *  > e )  ( 1 1 )  

where e is the error correction capability of the code. The random 
variables X, ,  which affect the codeword error probability in ( l l ) ,  
are conditionally independent (given all delays and phases). A loose 
upper bound on the packet error probability P e ( K ) ,  induced in the 
above packet radio network, is given by the following expression: 

The above example reveals that appropriate bit interleaving can 
guarantee the conditional independence of the random variables 
X,. In any case, even without bit interleaving, it is the author's 
belief that the packet error probability Pe( K )  will not be severely 
affected if we treat the random variables X ,  as conditionally 
independent, provided that K < N. As a result, the derivation of 
the upper bound on the packet error probability P e ( K ) ,  presented in 
the next section, will be based on the following assumption. 

Assumption I :  Given the phase ( c$i) and the delay ( r i )  of each 
interfering transmission (2 I i I K ) ,  the random variables X, 
(0 5 m 5 M - 1 )  are independent. 

111. AN UPPER BOUND ON THE PACKET ERROR PROBABILITY 

Let us define the random vectors 

Let us denote by f,, 4(?, 3) the joint probability density function 
of the random vectors 7 and 4. The first step in our effort to 
compute an upper bound on P J K )  [sec Section II, eq. (8)] is to 
condition on 4 (all phases) and 7 (all delays). Then, we get 

Pe( K ) = 1 1 Pr ( S > e I 7 = 3 , 4 = 6) f,, +( ?, 6) d$ d3 
7 #  

Due to assumption 1 and formula (9), we can write 
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where 

K 

nz + 1 + ( P j / P l ) ” 2 Z F ( i i , ~ r )  < 0) (16) 
i=2 

The second step in our work is to find an upper bound p, on the 
probability p (i.e., th5 conditional bit error probability), which is 
independent of i and 4. By doing so, we can upper bound P J K )  
by g( p , ) ,  since g( e )  is an increasing function of its argument [see 
also (14)]. 

Let us start by defining the random variable Y, such that 

where 

i p ( i , ,  6,) = {a‘“ ,ay ir /TC 

+ [ a ‘ ” ~ ‘ ”  0 0  + . . . + u y - l a g L l ] ( l  - iJT, )  

+ [ a(’)ii(l) 0 1  + . . . +uy-2agLl]  i r /Tc }  

’cos Gr/N; 2 5 i 5 K (19) 

and Z(l) corresponds to a fixed choice for the values of the compo- 
nents of the random vector a“’ = ( U ~ ’ U ( , ’ )  . . . U%: 

From the total probability formula and the fact that ng and 
I:(T~,~~) (2 5 i I K )  are symmetric random variables, we con- 
clude that 

p =  P r ( Y r O ) P r ( a ( ” =  a )  ^ ( I )  

(I( I )  = ;(I) 

* all possible choices of 6(’). (20) 

We now present two lemmas, which will help us define the upper 

Lemma I: 
bound pu .  

P r [ Y r 0 ]  ~ e x p ( - z ) ~ [ e x p ( z n ~ , ) ]  

where E denotes the expectation operator. 
Lemma 1 is a consequence of the well-knoyn Che_moff bound and 

the fact that the random variables n$ and If(?;, 4;) (2 5 i 5 K) 
are independent. A proof of Chernoffs bound can be found in [7]. 

Lemma 2: 

A generalized version of Lemma 2 (i.e., Lemma 3, in Section IV) 
is proven in Appendix B. Its proof is based on the increasing nature 
of the function h( t )  = e t  + eCt ( t  2 0) [i.e., as t increases ( t  L 
0), h ( t )  increases, too]. 

From Lemmas 1 and 2 we gei an upper bound on the Pr [ Y 2 01, 
which is independent of 3 and 4. Furthermore, this bound does not 
depend on the specific choice of 8’). Hence, it is an upper bound on 

the probability p. Consequently, 

with 
r N - I  i / 

The above discussion allows us to write 

Equation (25) provides us with an upper bound on the packet 
error probability P e ( K ) .  We denote this upper bound P,“(K).  

In Tables I and 11, the upper bound P,U(K) on the packet error 
probability P,( K )  is depicted for specific K values and N = 31 or 
127 (only the first three most significant digits of P,“( K )  are shown 
in the tables). This signal-to-noise ratio (Eb/No) is taken to be 12 or 
15 dB, and the interfering signals (i.e., packets #2, * * ,  # K )  are 
assumed to be 0, 3, or 6 dB stronger than the desired transmission 
(i.e., packet # 1). The results in Tables I and I1 correspond to the 
(63,30), (127,64), (255, 131), and (1023,513) BCH codes. The 

entries in Tables I and I1 correspond to very small values 
(< lo-”), and the “**” entries correspond to relatively large 
values (> 0.1). 

“*’. 

IV. COMMENTS 

Let us first make some comparisons between our bound and 
already existing bounds. To the best of our knowledge, the only 
existing upper bounds on P, ( K ) ,  in the open literature, correspond 
to the case when all signals (i.e., packets # 1, # 2, .  . . , # K )  arrive 
at the receiver with equal power (see [5]). 

Pursley et al. showed in [5 ]  that for equal power signals the 
probability p [see formula (16)] is upper bounded by the following 
expression: 

q = Q [  (2Eb/N0)1’2] 

+ ( l / r ) / m u - l s i n u  0 d2(u) [1  - dl(u) ]  du (26) 

where 

(27) 

(28) 

N ( K -  1) 
d, (u )  = {COS(u/N)} 

d2(’) = exp [ (-NO/4Eb)u2] 

and 
m 

Q(x) = ( 2 7 r - l i 2 1  e x p ( - u 2 / 2 ) d u .  (29) 

From our discussion in Section 11, it follows that we can upper 
bound the packer error probability P e ( K )  by 

In Table 111, we show the values of pu [see (23)] and q for 
different K values, when N = 3 1. The signal-to-noise ratio 
(,??,/No) is taken to be 12 or 15 dB and the interfering signals are 
assumed to be of equal power with the desired transmission. The 
entries in Table I11 correspond to the four most significant digits of 
the quantities pu and q. Table III indicates that for the same N a n d  
Eb/No values and for equal power signals the q bound is 6-11 
times better than the p, bound for various K choices. We have 
found that this relationship between pu and q holds for other N 
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TABLE I 
THE UPPER WUND ,P,U(K) ON THE PACKET ERROR PROBABILITY P,(K) 

K 

2 
3 
4 
5 
6 

K 

2 
3 
4 
5 
6 

K 

2 
3 
4 
5 
6 

K 

2 
3 
4 
5 
6 
7 

v 0 = 1 2  , e 3 1  
(1023,~513) BM d e  

OdB 3dB 

* * 
* 1.83D-02 
2.32D-12 ** 
2.81D-02 ** ** ** 

(255,131) BM code 

OdB 3dB 

* * 
2.07D-15 1.36D-02 
9.95D07 ** 
1.73D-02 ** 
** ** 

(127,64) ECH code 

OdB 3dB 

8.17D-11 2.00D-02 
4.64D-05 ** 
2.36D-02 ** ** ** 

* 3.48D-11 

(63,30) BCII d e  

OdB 3dB 

* 2.29D-08 
3.96D-08 1.73D-02 
2.39D-04 ** 
1.96D-02 ** 
1.83D-01 ** 
** ** 

6dB 

8.73C-03 ** 
** 
** 
** 

6dB 

9.17D-03 ** 
** 
** 
** 

6dB 

1.52D-02 ** 
** 
** 
** 

6dB 

1.41D-02 ** 
** 
** 
** 
** 

K 

2 
3 
4 
5 
6 

K 

2 
3 
4 
5 
6 
7 

K 

2 
3 
4 
5 
6 
7 

K 

2 
3 
4 
5 
6 
7 

E p 0 = 1 5  , E 3 1  
(1023,513) BCH d e .  

CdE 3dB 

* * 
* 3.88D-06 

1.llD-05 ** 
* ** 
** ** 

(255,131) BCH code 

OdB 3dB 

* * 
* 2.69D-04 
1.44D-10 ** 
4.2-04 ** 
1.69D-01 ** 
** ** 

(127,64) BCH code 

OdB 3dB 

* * 
* 1.5-03 
2.27D-07 ** 
2.02D-03 ** 
1.25D-01 ** ** ** 

(63,30) BM code 

OdB 3dB 

* 6.90D-12 
2.25D-11 2.65D-03 
6.9lD-06 ** 
3.25D-03 ** 
7.4?!3-02 ** 
** ** 

6dB 

5.81D-07 ** 
** 
** 
** 

6dB 

1.23D-04 ** 
** 
** 
** 
** 

a ,  
9.23D-04 ** 
** 
** 
** 
** 

6dB 

1.87D-03 ** 
** 
** 
** 
** 

values as well (e.g., N = 127). In Table IV we show &K) [see 
(30)] for Eb/No = 15 dB, N = 31 and for various K values. For 
the results in Table IV we assumed that a packet consists of a 
(1023,513) BCH code and that signals arrive with equal power at 
the receiver. As in Tables I and 11 a “*” entry in Table IV 
corresponds to a very small value (< Comparing the results 
of Table I (0 dB case) and IV, we see that P:(K) is very 
pessimistic fcr equal power signals. In particular, for the (1023,513) 
BCH code P:(K) predicts a smaller error probability for 9 users 
than P:(K) does for 5 users. 

Another important issue that should be addressed is the tightness 
of the upper bound P:(K) presented in Tables I and II. To do so 
we will compare the upper bound p,, defined in Section III, to the 
average bit error probability s induced in our systems. The average 
bit error probability s is defined as follows. 

where p is iven by expres_sion (16) and we took f, *(4,3) equal 
to (2 ?r T)-(’- for all 3,4 .  In Table V we show upper (s,) and 
lower ( s I )  bounds on the average bit error probability for N = 15; 
K = 2,3 ,  N = 31; K = 2, for Eb/No = 12 or 15 dB and for 
near-far ratios (NFR) of 0, 3, 6 dB (see [6] for a method to 
compute the quantities sI and s,). In the same table, we include the 
ratios r, and r, where rl = p,/s, and r, = p,/s,. The following 
observations are pertinent to the results included in Table V. 

0.2) The upper bound p ,  [and consequently P:(K)] is tighter 
for smaller signal to noise ratios Eb/N,, (see also [lo]). 

0 .3)  For smaller signal-to-noise ratios (e.g., E b / N o  = 12 dB) 
the upper bound p ,  [and consequently P:(K)] is not affected (in 

terms of orders of magnitude) as the number N of chips per bit 
increases. For larger signal to noise ratios (e.g., E b / N o  = 15 dB) 
the upper bound p ,  [and consequently P:(K)] deteriorates as N 
increases. 

0.4)  The upper bound p, [and consequently P:(K)] is not 
affected (in terms of orders of magnitude) as K (number of interfer- 
ing signals) changes. 

0.5) The upper bound p ,  [and consequently P:( K)] is tighter as 
the power of the interfering signals (near-far ratio) increases. 

We would like to point out that 0.2-0.5 should be used with 
caution, since they are primarily based on the limited number of 
data points contained in Table V. Note though that observations 2-4 
were also based on data points included in [6, Figs. 7, 8, and 91. 
Observation 5 allows us to claim that the entries of Tables I and 11 
(although upper bounds) indicate that the performance of direct-se- 
quence spread-spectrum packet radio networks deteriorates rapidly 
for unequal power signal (the near-far problem). The entries of 
Table V show that the p, bound is worse by one and sometimes two 
orders of magnitude than the average bit error probability. This is 
another indication that our upper bound P:(K) on the packet error 
probability is pessimistic. 

Let us now concentrate on one possible improvement of the upper 
bound derived in the previous section. Our starting point is formula 
(14). Let us make the usual assumptions about f,,* (i.e., 
r2 ,  73r * , 7K, dz , d3, * * , dK are independent random variables; 
each ri is uniformly distributed in the interval [O, T,]; each di is 
uniformly distributed in the interval [0,2 TI). Then we can easily 
express PJK) as a multiple integral, similar as the one in (14), but 
the range of each delay is the interval [0, Tc/2], while the range of 
each phase is the interval [0, a/2] (see [5, Appendix, p. 101 for 
more details). The improvement of the bound is due to the following 
generalized version of Lemma 2. 
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K 
12 
13 
14 
15 
16 
17 
18 

TABLE I1 
THE UPPER BOUND P : ( K )  ON THE PACKET ERROR PROBABILITY P J K )  

- 
-~ ~ 

€5,/N0=12dB, N=127 E$$,=15dB, N=127 

K 
10 
11 
12 
13 
14 
15 
16 
17 
18 

K 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

OdB 

4.79D-13 
2.95D-09 
2.54D-06 
3.84D-04 
1.3lD-02 
1.29D-01 

* 

OdB 
1.87D-13 
7.07D-11 
9.52D-09 
5.44D-07 
1.5OD-05 
2.26D-04 
2.OOD-03 
1.14D-02 
4.41D-02 

WB 
4.01D-13 
6.56D-11 
4.45D-09 
1.48D-07 
2.78D-06 
3.21D-05 
2.47D-04 
1.35D-03 
5.55D-03 
1.77D-02 
4.57D-02 

K O d B  
6 1.78D-13 
7 2.41-11 
8 1.29D-09 
9 3.44D-08 
10 5.28D-07 
11 5.23D-06 
12 3.62D-05 
13 1.86D-04 
14 7.5OD-04 
15 2.45E-03 
16 6.72D-03 
17 1.58D-02 
18 3.2-02 

(1023,513) BCH d e  
K 3dB K 
6 *  3 
7 3.18D-13 4 
8 1.88D-06 5 
9 1.11D-02 6 
10 ** 

(255,131) BCH d e  
K 3dB K 
5 *  3 
6 5.70D-11 4 
7 4.6OD-07 5 
8 1.99D-04 6 
9 1.04D-02 
10 1.16D-01 
11 ** 

(127,64) BCH d e  
K 3dB K 
4 *  3 
5 5.6OD-11 4 
6 1.30D-07 5 
7 2.9OD-05 6 
8 1.25D-03 
9 1.66D-02 
10 9.39D-02 
11 ** 

6dB 

2.30D-13 
9.81D-03 

* 

** 

6dB 

3.99D-07 
9.75D-03 

* 

** 

6dB 
4.79D-11 
2.66D-05 
1.59-02 ** 

(63,30) BCH d e  
K 3dB K 6 d B  
3 *  2 2.81D-08 
4 2.12D-11 3 1.64D-04 
5 3.11D-08 4 1.46D-02 
6 4.81D-06 5 1.5OD-01 
7 1.74D-04 6 ** 
8 2.32D-03 
9 1.51D-02 
10 5.85D-02 
11 1.53D-01 
12 ** 

K 
14 
15 
16 
17 
18 
19 
20 

K 
12 
13 
14 
15 
16 
17 
18 
19 
20 

K 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

WB 

5.11D-13 
3.06D-09 
2.62D-06 
3.92D-04 
1.33D-02 
1.3OD-01 

* 

OdB 
1.93D-13 
7.24D-11 
9.72D-09 
5.54D-07 
1.53D-05 
2.29D-04 
2.02D-03 
1.14D-02 
4.44D-02 

WB 
4.10D-13 
6.68D-11 
4.521)-09 
1.5OD-07 
2.81D-06 
3.25D-05 
2.5OD-04 
1.36D-03 
5.59D-03 
1.78D-02 
4.59D-02 

K O d b  
8 1.8OE-13 
9 2.44D-11 
10 1.39D-09 
11 3.48D-08 
12 5.34D-07 
13 5.28D-06 
14 3.65D-05 
15 1.87E-04 
16 7.55D-04 
17 2.46D-03 
18 6.75D-03 
19 1.59D-02 
20 3.29D-02 

(1023,513) BCH d e  
K 3dB K 
7 *  4 
8 3.11D-13 5 
9 1.85D-06 6 
10 1.1oD-02 
11 ** 

(255, 
K 
6 
7 
8 
9 
10 
11 
12 

,131) BCH d e  
3dB K * 4 
5.59D-11 5 
4.55D-07 6 
1.98D-04 7 
1.04D-02 
1.16D-01 ** 

(127,64) BCH d e  
K 3dB K 
5 *  4 
6 5.48D-11 5 
7 1.29D-07 6 
8 2.88D-05 7 
9 1.24D-03 
10 1.66D-02 
11 9.38D-02 
12 ** 

6dB 

1.40D-06 
* 
** 

6dB 
4.42-11 
1.76D-04 
1.llD-01 ** 

6dB 
1.12D-07 
1.16D-03 
9.05D-02 ** 

(63, 
K 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

.30) BCH d e  
3dB K 6 d B  
* 3 1.7l.D-11 
2.06D-11 4 4.35D-06 
3.06D-08 5 2.19D-03 
4.77D-06 6 5.67D-02 
1.73D-04 7 ** 
2.3I.D-03 
1.51D-02 
5.84D-02 
1.53E-01 ** 

Lemma 3: The function h(?,, 6,) =*E {exp [Z(P,/P~)~’~?,(’(?,, 
&)I} where ?, belongs toAIO, Tc/2], 6, belongs to [0, ~ / 2 ]  and 
z 2 0, increases as ?,, or 6,, or both, decrease. 

The proof of Lemma 3 can be found in Appendix B. Due to 
Lemma 3, we have the following upper bound for the Pr ( Y 2 0): 

P r ( Y r 0 )  5 exp(-z)E[exp(zn;)]  

K 

1 = 2  
. n E{exp [ Z ( P ~ / P ~ ) ” ~ ~ , O ( O ,  &)] 1.  (32) 

It is worth noting that the value of the upper bound in (32) is 
independent of the specific choice 6‘’’ of the a‘” sequence [see 
(19)]. To simplify our notation we define wJ(z, 4,) as follows: 

w,(z, 4J) = {e-zE[exp (zng)] 

E(exp [ z ( P , / P , ) ~ ’ ~ ~ ( O ,  6,)]]. (33 

Then, from (14), (15), (16), (20), (32), and (33) we get 

M - i  K 

j = 2  

It is not difficult to see that the integrand in (34) is in a product 
form with respect to the variables 4, ( j  = 2, . . , K). Hence, to 
compute the RHS of (34) we need to evaluate single integrals 
instead of a multiple one. To be more specific let us write 

1 M - i  

1 - n K W , ( Z > 4 j )  

j = 2  

M -  i K 

n = O  

Due to (39 ,  (34) becomes 
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TABLE III 
COMPARISONS BETWEEN THE UPPER BOUNDS pu AND q ON THE BIT ERROR 

PROBABILITY FOR EQUAL POWER SIGNALS 

v 0 = 1 2  I N=31 

3.307D-04 3.245D-05 
5.119D-03 5.950D-04 
1.965D-02 2.567D-03 
4.364D-02 6.227D-03 
7.400D-02 1.133D-02 
1.077D-01 1.748-02 

v 0 = 1 5  I e 3 1  

PU 
1.715D-05 
1.719D-03 
1.116D-02 
3.086D-02 
5.855D-02 
9.097D-02 
1.255D-01 

q 

1.522D-06 
1.865D-04 
1.385D-03 
4.23OD-03 
8.678D-03 
1.437D-02 
2.091D-02 

TABLE IV 
THE UPPER BOUND fi:( K )  ON THE PACKET ERROR PROBABILITY P,( K )  FOR 

EQUAL POWER SIGNALS 

K 

3 * 
4 * 
5 * 
6 * 
7 * 
8 2.51D-11 
9 6.09D-07 

TABLE V 
COMPARISONS BETWEEN THE EXACT BIT ERROR PROBABILITY s AND THE 

UPPER BOUND pu  

s 
WO - s1 pu rl 

15 12 2 OdB 3.543D-05 4.444D-05 4.592D-03 103 130 
15 12 2 3dB 5.177D-04 6.430-04 4.122D-02 64 80 
15 12 2 6dB 4.254D-03 5.207D-03 1.757D-01 34 41 
15 12 3 WB 3.024-04 4.43OD-04 4.490B02 101 148 
15 12 3 3dB 2.827E-03 4.091P03 1.813-01 44 64 
15 12 3 6dB 1.447D-02 2.073-02 4.076-01 20 28 

15 15 2 OdB 4.411D-06 5.772-06 1.211D-03 210 274 
15 15 2 3dB 2.306-04 2.915D-04 2.747D-02 94 119 
15 15 2 6dB 3.158-03 3.894P03 1.577D-01 40 50 
15 15 3 WB 1.148D-04 1.712D-04 3.144-02 183 273 
15 15 3 3dB 1.925E-03 2.805D-03 1.639D-01 59 85 
15 15 3 6dB 1.248D-02 1.792D-02 3.969D-01 22 32 

31 12 2 WB 2.156D-06 2.54OD-06 3.307D-04 130 153 
31 12 2 3dB 3.628D-05 4.281D-05 4.72OD-03 110 130 
31 12 2 6dB 5.118-04 6.007D-04 4.084D-02 68 80 

31 15 2 OdB 3.587D-08 4.377D-08 1.715D-05 392 478 
31 15 2 3dB 5.433D-06 6.542D-06 1.448D-03 221 266 
31 15 2 6dB 2.364D-04 2.8OOD-04 2.794D-02 100 118 
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TABLE VI 
THE UPPER BOUND F:(K)  ON THE PACKET ERROR PROBABILITY P,( K )  

N=31, v 0 = 1 2 ,  (63,30) BCH ccde 

K OdB 3dB 6dB 

2 2.36D-03 
3 9.85D-04 
4 3.43D-06 
5 2.99-04 

N=31, v0=15, (63,30) BCH code 

K WB 3dB 6dB 

2 2.57-04 
3 1.03D-04 
4 5.59D-08 
5 2.28-05 
6 9.41-04 

Note that f,(a) in (34) correspond: to the probability density 
function of the vector 4. Similarly f+ .( 4;) is the probability density 
function of-the phase of the j th interfering signal. Let us now 
denote by P r ( K )  the RHS of (36) when z = z* where z* corre- 
sponds to the value of z which attains the infimum of the expression 
in formula (36). That is, 

M 

Based on Lemma 3 we can compute arbitrarily tight upper bounds 
for the single integrals contained_ in expression (37). Hence, an 
arbitrarily tight upper bound of P,U(K) can be evaluated. It turns 
out that this is a computationally intensive procedure due, primarily, 
to the fact that the number of points required to compute the 
integrals in (37) is large. Furthermore, the computational complex- 
ity of the task to evaluate Pr( K) with accuracy increases rapidly as 
the code length (M) increases. 

In Table VI, we show tight upper bounds of F,U(K) for the 
(63,30) BCH code and for the same parameter values (i.e., 
K, E,IN,, N, near-far ratios) considered in Table I. 

The results in Table VI allow us to make certain observations. 
0.6) PE(K)  is between an order and two orders of magnitude 

better than P,U(K). 
0.7)  The improvement achieved by &?(K) decreases as the 

near- far ratio increases. 
Similar results as the ones presented in Table VI were obtained 

for the (127,64) BCH code. The main reason that motivated us to 
present the above improved upper bound on the packet error proba- 
bility P J K )  is to get a quantitative idea of how good an upper 
bound the Chernoff bounding technique (see Lemma 2) gives us. 

V. CONCLUSION 

We presented an upper bound on the packet error probability 
induced in direct-sequence spread-spectrum networks. Furthermore, 
we compared our upper bound to already existing results, we 
examined its tightness, and we discussed one way of improving it. 

An important advantage of the bound pu ,  derived in Section III, 
is that its validity (see Lemmas 1 and 2 and Appendix B) does not 
rely on any assumptions about the joint probability density function 
f,,+ of all delays and phases (e.g., independence of the delays and 
phases). The only assumption that we used for the derivation of p ,  
is that each delay and phase includes in its range the zero value. 
Furthermore, the form of the bound pu is simple and easily 
computable [see (23)l. Once pu is calculated the computation of 
PF(K)  especially for BCH codes [see (25)] becomes a straightfor- 
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ward task. More importantly, our presentation is Section I11 has 
shown that the upper bound on the packet error probability is valid 
independently of whether signals arrive with equal or unequal 
powers at the receiver site. 
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We can work similarly to show that 

P r ( x , < O n x ’ , < o / a $ * ’ =  1 , a ‘ , 3 ) =  -1) 

+ a;3 )u i~ )  + 4 3 1 4 )  + a i 3 ) a y ) ]  14. ( ~ , 2 )  Furthermore, 

Then, P r ( x , < O )  = P r ( X ,  < O )  

P r ( x , < o n x ,  C O )  = - 1 [Pr (x,j+. +) < 0) + Pr ( ~ , j + * - )  < o)] . (A . I I )  
2 

= 1 / 4 ~ r ( ~ , < 0 n x , < o / a ( , ~ ) =  1 , a $ 3 ) =  I )  Equations (A. 10) and (A. 11) allow us to state that 

+ 1 / 4 ~ r ( x , < 0 n x ,  < O / U ; * ) =  - i , a i 3 ) =  -1  ) 

+ 1/4Pr(X0 < 0 n x, < o/@ = 1, 4 3 )  = - 1) 

* 1 / 4 ~ r  ( x ,  < o n x, < o/a‘,*) = - 1,  ~ ( 1 ~ )  = 1).  

P r ( X , < O n x , < O )  = P r ( X , < O ) P r ( X , < O )  (A.12) 

if and only if 

Pr ( X;+.  + )  < 0) = Pr ( X$+. - )  < 0) . (A. 13) 

(A,3) 
After some algebra, we showed that 

Pr (xi+. + )  < 0) By direct substitution we can see that 

P r ( x , < O n x ,  < O / U ~ * ) =  1 , a j 3 ) =  1) = 1/4[ 1/16Q( - d )  + 2/16Q( -0%) + 8/16Q(O) 

+ 14/16Q(0.5d) + 14/16Q(d) + 14/16Q(1.5d) 
= Pr [ { n; + 1 + u t ) (  a?’, + ab‘) + a?), + ah3)) 

+8/16Q(2d) + 2/16Q(2.5d) 

+ 1/16Q(3d)] (A. 14) 

(A.15) 

= 1. Then, we deduce from (A.4) that and Q(x) = ( 2 ~ ) - ” *  exp ( -y2/2) dy (A.16) 

+ 4 ) ( 2  + ab2) + 0b3)) < o} n {ny + 1 + ~ $ l ) ( ~ $ ~ )  

+a:*) + ai3) + 4”) i- a$”(2 + ai2) + ai3)) < O}] . (A.4) 

Let Xh’. + )  be a random variable equal to X ,  with u(1*) = ai3) 
d = - (2Eb/N0)’I2 where 

m 

P r ( X , < O n x ,  <O/a!* )=  1 , a / 3 ) =  1) = [ P r ( x , j + , + )  < O)]* .  

(A.5) 

Also, 

P r ( x , < o n x ’ , < o / u j * ) =  - i , ~ ! ~ ) =  -1) 

= Pr [ { n; + 1 + u t ) (  a{*) + ab2) + ay), + ab3)) 

+ u p (  - 2 + + ab3)) < 0) n { ny + 1 + ay)( ai2) + 
+ai3) + ai3)) + a$’)(-2 + ai2) + ai3)) < O}] . (A.6) 

We can write (A.6) as follows: 

P r ( x ,  < o n  x, < o/u‘ ,~)  = -1 ,  4,) = -1) 

= Pr [ { n ~ ,  + 1 - ab”( - a?), - ai*’ - U?), - ~8’) 
-ar1)(2 - ab*) - ai3)’> < o} n { n: + 1 - u$l)(-ui*) 

-ai2) - ai3) - ai3)) - ai”(2 - ai2) - 4”) < O}] . (A.7) 

Every - a  item in (A.7) is a binary random variable assuming 
values + 1 or - 1 with equal probability. Hence, 

P r ( x , < o n x ’ ,  <o/aj*)= - i , a i 3 ) =  -1) 

= [Pr (X,$+.+) < O)]’. (A.8) 

J X  

Pr (xi+. - 1  < 0) 

= 1/4[2/16Q( -0 .5d)  + 4/16Q(O) + 14/16Q(0.5d) 

+24/16Q(d) + 14/16Q(1.5d) + 4/16Q(2d) 

+ 2/16&(2.5d)] (A.17) 

with d and Q defined in (A.15) and (A.16). 
Consequently, 

Pr ( X$+. + )  < 0) - Pr ( X$+. < 0) = 1 /4[ 3/16 

+4/16Q(2d) + 1/16Q(3d) - 11/16Q(d)].  (A.18) 

By choosing Eb/No large enough, we can make the above 
difference negative. Hence, in general, 

Pr (xi+, +)  < 0) # Pr ( - )  < 0) 

or equivalently 

Pr ( X ,  < 0 n x, < 0) + Pr ( X ,  < 0 )  Pr (XI  < 0 ) .  

APPENDIX B 

Let us examine the term E{exp [ z;&?~,  ii)]} where z j  stands 
for Z(P~/P~)’/~. We first define S t  to be the set of sequences a“) 
such that a!), i?!) = - U$- , a$)- , and S y  the set of sequences a(‘) 
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such that a“, i?h’) = a$)- I 

formula we get 
Then, from the total probability 

E{exp [ z,f?(?;, &) I}  
a(I‘)€sp 

= E { e x p [ z , j i O ( i , , ~ , ) ] l a ( ’ ) E S A }  Pr(a(’)ESA) 

where 

+ ( I  - 2?i/Tc)a9-li?%Ll cos $ i / N  (B.3) I 
with 

c= { j : i ? y ) # i ? y i l ; 0 5 j s N - 2 }  (B.4) 

D = { j :  i?y) = I ; 0 5 j 5 N - 2 )  . (B . 5 )  

6,) indicates that we should only consider 
?,E [O, Tc/21 and 4, E [O, 7r/2] (see [ 5 ,  Appendix, p. IO] for more 
details) .~ 

For + i ~  10, */21 and ?i,l 5 ? i , 2 ,  such that ? i , 2 ~  [0, Tc/2],  
we will show that 

E{exp [ z,i: A (  ? i , 2 ,  &)] } 5 E{exp [ z,[o A (  ?,, &)] } . (B.6) 

The form of 

Let us first define the random variables U and X 

Then, we can write 

~ { [ e x p [ z , j f . ( i , , i ; ) ] }  

= C E { e x p  [ z, ,  ifA(ii, 6,)] I U = U} Pr [ U  = U ]  

= 1 e x p ( u ~ o s 6 ~ / N ) E { [ e x p ( z , X ( l  - 2?,/Tc) 
U 

U 

(B.9) -cos ~ J N ) ]  } Pr [ U = U ]  

where ?, stands for ?,, or ?,, 2 .  Furthermore, we can show that 

E{[exp(z,X(I  - ~ ~ i , 2 / ~ , ) c o ~ 4 i / ~ > ] }  

4 E{ [ exp ( zjX( 1 - 2 ?,, /Tc)  cos &/N)] } . (B. 10) 

Inequality (B. 10) has the following form: 

C [ ~ X P  (Zix(1 - 2‘i,2/Tc)) 
x,o 

+exp ( -z ,x( I  - 2 ? , , 2 / ~ c ) ) ]  Pr [ x = x] 

5 c [exp(z ,x( l  - 2?i , l /TC))  
x 2 0  

+ e x p ( - z i x ( l  - 2 ? j , I / T c ) ) ] P r [ X = x ] .  ( B . l l )  

(B. 11) is true due to the increasing nature of the function h( t)  = 
er + e- ‘  ( t  2 0). (B.9) and (B.lO) prove the validity of (B.6). 

Working si-larly 2s above, we can a120 show that for 
[O, Tc/2] and +,, I I + i , 2 ,  such that +,, , , + , , 2  E [0, 7r/2], the fol- 
lowing inequality is true 

E{exp [ z,jiqA(i,,  & , 2 ) ]  } 5 E{exp [ z, ,  & , I ) ]  } .  
(B.12) 

Combining (B.6) and (p.12) we conclude that E {exp [z , f t  A(?i ,  
i,)]} increases as ?,, or +,,-or both 4ecrease. In addition to that, we 
can show that E {exp [ z,Z: B(?,, +,)I} increases as ?,, or 4,, or 
both decrease where 

E ( e x p [ ~ , i , 9 ~ ( ? , , 6 , ) ] )  = E { e x p [ z , ~ , “ ( ~ , , ~ , ) ~ a ( ; ) E ~ ~ }  

with 

itb(?;, 4,) = (1 - 2?,/T,) 1 ay)iiy’ + { jeC 

+ a!.!.L I 5%: 

The above discussion and formula (B.1) 
Lemma 3. 

(B.13) 

J J  
j a  

cos &/N. (B. 14) 

proves the validity of 
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